Outline

- Brief description of random forests
- Why does it work?
- Tuning random forests
- Comparison with other algorithms
- Gravy
- Wrap up
CART

- Find best “gap” in a variable to split the data into two parts
- Repeat until futile
- Naturally handle categorical and numerical variables
- Very greedy algorithm => unstable
- Algorithm can be parallelized at different levels
- Finding “right-sized” tree requires cross-validation
- Generally not very accurate
Example: Iris Data
Random Forests

Randomly sample rows

Randomly subset columns

Pick the best column to split the data into two parts

Randomly subset columns
Why Is RF Popular?

- Inherits many advantages of CART: places very little requirement on data preprocessing
- High Performance
- “Does not overfit”
How Ensemble Models Work

Every model needs to be better than random guessing.

Try to have different models make mistakes on different data.

<table>
<thead>
<tr>
<th>Y</th>
<th>Model1</th>
<th>Model2</th>
<th>Model3</th>
<th>Model4</th>
<th>Model5</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

67% 83% 67% 67% 50% 100%
Correlation and Strength

Correlation: How similar the base predictors are

Strength: How accurate the base predictors are

Low correlation => high diversity

Correlation comes with sufficiently high strength

Find good compromise between the two

Small m_{try} promotes diversity
Nearest Neighbor Classifier

Terminal nodes in a decision tree represent groups of similar data, with sizes of neighborhoods decided from training data (hyper-rectangular regions).

RF averages terminal nodes from many trees, so neighborhoods are varied -- “smooth out” the crude neighborhoods of a single tree.
What Controls RF’s Model Complexity?

- Viewed as adaptive weighted NN, increasing number of trees makes weights “smoother”
- Sizes of neighborhoods can also be an indicator of model complexity
- There is evidence that smaller trees in RF work better for some data
- Given the same data, smaller trees \Leftrightarrow larger neighborhoods
Median Correlation vs. Median RMSE

nodesize = 3, 5, 7, 15, 30
mtry = 3, 6, 9
sampsize = 20%, 30%, ..., 80%
mtry = 3, 6, 9

Higher diversity but worse accuracy
Higher accuracy but less diversity
Tuning RF

- Use `mtry` to balance correlation and strength.
- A larger `nodesize` forces the algorithm to produce smaller trees, thus larger neighborhoods.
- A smaller `sampsize` also induces smaller trees, also make trees more diverse (but should be used with larger number of trees).
Simulated Example: Friedman #1

nodesize = 3, 5, 7, 15, 30

mtry = 3, 6, 9

sampsize = 20%, 30%, ..., 80%

nodesize = 3, 5, 7, 15

mtry = 6
“Does Not Overfit”

- Definition of “overfitting”?
- Very different from something like Neural Networks
 - Early-stopping: monitor difference between training and validation errors; divergence of the two is seen as overfitting
- RF grows each tree to maximum size, thus have nearly 0 training error
- For boosting, test set error can keep decreasing as iterations go on even after training error reached 0! (But it will eventually increase– can’t boost forever)
- Bottom line: gap between training error and test set error does not necessarily indicate overfitting; increasing test set error with increasing model complexity does
RF vs. Boosting

RF
- Trees are independently grown
- Use randomness to get diverse trees
- Grow trees to maximum sizes
- Number of trees is not a tuning parameter
- Model size can be huge due to maximal size trees

Boosting
- Trees are grown sequentially
- Each tree tries to correct previous mistake
- Keep each tree relatively small
- Number of trees should be tuned
- Model size is usually small
MDS Projections of Individual Tree Predictions

RF

GBM (100 trees, shrinkage=.2)

GBM (700 trees, shrinkage=.05)
RF vs. DNN

RF:
Adding more trees to RF does not seem to increase model complexity
No explicit “optimization”
Prediction can not exceed the range of training data
Difficult to update model with new data

DNN:
Complexity is predetermined by network architecture
Optimization with controlled greed
Prediction can be unbounded, depending on activation function
Trivial to update model with new data
RF vs. XGBoost vs. DNN: Performance

Courtesy of R. P. Sheridan
RF vs. XGBoost vs. DNN: Training Time

Courtesy of R. P. Sheridan
RF vs. XGBoost vs. DNN: Model Sizes

Courtesy of R. P. Sheridan
Variable Importance by Permutations

Breiman’s idea of permuting data one variable at a time and seeing how accuracy drops can be apply to any algorithm, not just RF

For the k^{th} feature at the i^{th} shuffle:

$$d_{ik} = E_{ik} - E,$$

$$\text{VarImp}(F_k) = \frac{\text{mean}(d_{ik})}{\text{SD}(d_{ik})}.$$
Partial Dependence Plot

• Every predictive model represents a function with multiple variables \(y = f(x_1, ..., x_p) \)
• The marginal relation between \(y \) and a particular variable/predictor \(x_i \) can be examined using
 Partial Dependence (proposed by Friedman 1999).

Example:

Assuming a model with 2 predictors, \(y = f(x_1, x_2) \),

The **partial dependence** on \(x_1 \): \(p(x_1) = \int f(x_1, x_2) \, dx_2 \)

 i.e., all remaining variables are integrated out
Computing Partial Dependence

Computing the partial dependence of variable x_1 for model $y = f(x_1, \ldots, x_p)$

Original data

![Original data](image1)

Replace the original values of x_1 with some constant, such as 1.2

Example values:
- x_1: 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, ...

Modified data

![Modified data](image2)

Predict outcome using modified data

Example values:
- $f(x)$: f_1, f_2, f_3, f_4, f_5, f_6, ...

Compute the average prediction, $p(x_1 = 1.2)$

Repeat the process with different x_1 values to obtain the partial dependence function $p(x_1)$

Note: R package “pdp”, “ALEPlot”, and “ICEbox” implement this and extensions
Prediction Intervals

- The idea behind quantregForest enable prediction intervals to be formed by post-processing a randomForest object
 - For each new data point to be predicted, it lands in a leaf in each tree and is predicted by the mean of the (in-bag) data in that leaf, then averaged over all trees
 - We can use the in-bag data that fell in the same terminal nodes as the new data point as a sample from the conditional distribution, thus can be used to estimate the conditional quantiles
 - The grf package takes this idea further and use it for local likelihood
- While it might be possible to get such intervals with other methods by customizing the loss function to estimate quantiles, it requires fitting a separate model for each quantile
Room for Improvement

- Classification runs faster than regression, due to lack of pre-sorting in regression
- Currently tree depth is not tracked, thus cannot easily control it
- Splitting criteria are hard coded, no easy way to customize
- Handling of large number of categories is tricky
- Missing value handling can be better
- Some special tricks can speed up algorithm for some specific data type (e.g., all binary predictors)
Wrapping Up

- RF is a flexible, robust and high performance ML method
- Basic understanding of how it works can give intuitions on how to tune it
- For large data, try small `sampsize` and larger number of trees
- Some of the ideas introduced with the method can be extended to other methods
Acknowledgement

- Leo Breiman
- Adele Cutler
- Vladimir Svetnik
- Matt Wiener
- Numerous former interns
- Users who reported bugs