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CART 

● Find best “gap” in a variable to split the data into two parts 

● Repeat until futile 

● Naturally handle categorical and numerical variables 

● Very greedy algorithm => unstable 

● Algorithm can be parallelized at different levels 

● Finding “right-sized” tree requires cross-validation 

● Generally not very accurate 



Example: Iris Data 
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Random Forest CART 



Why Is RF Popular? 

● Inherits many advantages of CART: places very little 

requirement on data preprocessing  

● High Performance 

●  “Does not overfit” 

 



How Ensemble Models Work 

Every model need to 

be better than random 

guessing 

 

Try to have different 

model make mistakes 

on different data 

Y Model1 Model2 Model3 Model4 Model5 Aggregate 

0 0 1 0 0 1 0 

1 0 1 1 1 1 1 

1 1 1 0 1 1 1 

0 1 0 0 1 0 0 

0 0 0 1 0 1 0 

1 1 1 1 0 0 1 

67% 83% 67% 67% 50% 100% 



Correlation and Strength 

Correlation: How similar the base predictors are 

Strength: How accurate the base predictors are 

Low correlation => high diversity 

Correlation comes with sufficiently high strength 

Find good compromise between the two 

Small mtry promotes diversity 

 



Nearest Neighbor Classifier 

Terminal nodes in a decision tree 

represent groups of similar data, with 

sizes of neighborhoods decided from 

training data (hyper-rectangular 

regions) 

RF averages terminal nodes from 

many trees, so neighborhoods are 

varied -- “smooth out” the crude 

neighborhoods of a single tree 

CART 

RF 



What Controls RF’s Model Complexity? 

● Viewed as adaptive weighted NN, increasing number of trees makes weights 

“smoother” 

● Sizes of neighborhoods can also be an indicator of model complexity 

● There is evidence that smaller trees in RF work better for some data 

● Given the same data, smaller trees ⇔ larger neighborhoods 



Median Correlation vs. Median RMSE 
nodesize=3, 5, 7,15, 30 

mtry=3, 6, 9 
sampsize=20%, 30%, …, 80% 

mtry=3, 6, 9 

Higher diversity but 

worse accuracy 

Higher accuracy 

but less diversity 

1 
3 

2 

3 

1 2 



Tuning RF 

● Use mtry to balance correlation and strength 

● A larger nodesize forces the algorithm to produce smaller 

trees, thus larger neighborhoods 

● A smaller sampsize also induces smaller trees, also make 

trees more diverse (but should be used with larger number 

of trees) 

 



Simulated Example: Friedman #1 

nodesize=3, 5, 7,15, 30 

mtry=3, 6, 9 
sampsize=20%, 30%, …, 80% 

mtry=3, 6, 9 

sampsize=20%, 30%, …, 80% 

nodesize=3, 5, 7, 15 

mtry=6 



“Does Not Overfit” 

• Definition of “overfitting”? 

• Very different from something like Neural Networks 
• Early-stopping: monitor difference between training and validation errors; divergence of the 

two is seen as overfitting 

• RF grows each tree to maximum size, thus have nearly 0 training error 

• For boosting, test set error can keep decreasing as iterations go on even after 

training error reached 0! (But it will eventually increase– can’t boost forever) 

• Bottom line: gap between training error and test set error does not necessarily 

indicate overfitting; increasing test set error with increasing model complexity 

does 

 



RF vs. Boosting 

RF 

● Trees are independently grown 

● Use randomness to get diverse 

trees 

● Grow trees to maximum sizes 

● Number of trees is not a tuning 

parameter 

● Model size can be huge due to 

maximal size trees 

Boosting 

● Trees are grown sequentially 

● Each tree tries to correct 

previous mistake 

● Keep each tree relatively small 

● Number of trees should be 

tuned 

● Model size is usually small 



MDS Projections of Individual Tree Predictions 

RF GBM (100 trees, shrinkage=.2)  GBM (700 trees, shrinkage=.05)  

1st tree 

last tree 



RF vs. DNN 

RF: 

Adding more trees to RF does not 

seem to increase model complexity 

No explicit “optimization” 

Prediction can not exceed the range 

of training data 

Difficult to update model with new 

data 

 

DNN:  

Complexity is predetermined by 

network architecture 

Optimization with controlled greed 

Prediction can be unbounded, 

depending on activation function  

Trivial to update model with new data 



RF vs. XGBoost vs. DNN: Performance 

Courtesy of R. P. Sheridan 



RF vs. XGBoost vs. DNN: Training Time 

Courtesy of R. P. Sheridan 



RF vs. XGBoost vs. DNN: Model Sizes 

Courtesy of R. P. Sheridan 



Error on i-th 

Permuted Hold-out 

Data, Eik 

Error on i-th 

Permuted Hold-out 

Data, Eik 

Hold-out 

Data 

Shuffle the kth 

feature n times 

Trained Model 

Error on original 

hold-out data, E 
Error on data (ith 

shuffle of kth 

feature), Eik 

For the kth feature at the ith 

shuffle: 

      𝑑𝑖𝑘 = 𝐸𝑖𝑘 − 𝐸, 

 

VarImp(𝐹𝑘) =
𝑚𝑒𝑎𝑛(𝑑𝑖𝑘)

𝑆𝐷 𝑑𝑖𝑘
   

Breiman’s idea of permuting data one variable at a time and seeing how accuracy 

drops can be apply to any algorithm, not just RF 

 

Variable Importance by Permutations 



Partial Dependence Plot 

• Every predictive model represents a function with multiple variables y = 𝑓(𝑥1, … , 𝑥𝑝) 

• The marginal relation between y and a particular variable/predictor 𝑥𝑖 can be examined using 

Partial Dependence (proposed by Friedman 1999). 

 

Example:  

Assuming a model with 2 predicators, y = 𝑓(𝑥1, 𝑥2), 

The partial dependence on 𝑥1∶  𝒑  𝒙𝟏 = ∫ 𝑓  𝑥1, 𝑥2  𝑑𝑥2 

                                            i.e., all remaining variables are integrated out 

 



Computing Partial Dependence 

Computing the partial dependence of variable 𝑥1 for model y = 𝑓(𝑥1, … , 𝑥𝑝) 

24 

x1 x2 x3 … 

…

… 

f(x) 

f1 

f2 

f3 

f4 

f5 

f6 

… 

Original data 

x1 x2 x3 … 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

…

… 

Replace the 

original values of 

𝑥1 with some 

constant, such as 

1.2 

Predict 

outcome 

using 

modified 

data 

Modified data 

Compute the average 

prediction, 𝑝(𝑥1 = 1.2) 

Repeat the process with 

different 𝑥1 values to obtain the 

partial dependence function 𝑝(𝑥1) 
  

Note: R package “pdp”, “ALEPlot”, and “ICEbox” implement this and extensions 



Prediction Intervals 

● The idea behind quantregForest enable prediction intervals to be formed by 

post-processing a randomForest object 

○ For each new data point to be predicted, it lands in a leaf in each tree and is predicted by the 

mean of the (in-bag) data in that leaf, then averaged over all trees 

○ We can use the in-bag data that fell in the same terminal nodes as the new data point as a 

sample from the conditional distribution, thus can be used to estimate the conditional quantiles 

○ The grf package takes this idea further and use it for local likelihood 

● While it might be possible to get such intervals with other methods by 

customizing the loss function to estimate quantiles, it requires fitting a 

separate model for each quantile 



Room for Improvement  

● Classification runs faster than regression, due to lack of pre-sorting in 

regression 

● Currently tree depth is not tracked, thus cannot easily control it 

● Splitting criteria are hard coded, no easy way to customize 

● Handling of large number of categories is tricky 

● Missing value handling can be better 

● Some special tricks can speed up algorithm for some specific data type (e.g, 

all binary predictors) 



Wrapping Up 

● RF is a flexible, robust and high performance ML method 

● Basic understanding of how it works can give intuitions on how to tune it 

● For large data, try small sampsize and larger number of trees 

● Some of the ideas introduced with the method can be extended to other 

methods 
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