
Random Forests

What, Why, And How

Andy Liaw

Biometrics Research, Merck & Co., Inc.
andy_liaw@merck.com

Outline

● Brief description of random forests

● Why does it work?

● Tuning random forests

● Comparison with other algorithms

● Gravy

● Wrap up

CART

● Find best “gap” in a variable to split the data into two parts

● Repeat until futile

● Naturally handle categorical and numerical variables

● Very greedy algorithm => unstable

● Algorithm can be parallelized at different levels

● Finding “right-sized” tree requires cross-validation

● Generally not very accurate

Example: Iris Data

Random

Forests

5

 Y X1 X2 X3 X4 X5 X6 X7 X8

1

2

3

4

5

6

7

8

9

10

 Y X1 X2 X3 X4 X5 X6 X7 X8

1

3

4

6

8

9

 Y X1 X2 X3 X4 X5 X6 X7 X8

2

3

5

6

7

9

 Y X1 X2 X3 X4 X5 X6 X7 X8

1

3

5

7

8

10

 Y X1 X2 X3 X4 X5 X6 X7 X8

2

4

5

6

7

8

…

 Y X2 X3 X8

1

3

4

6

8

9

R
a

n
d

o
m

ly
 s

a
m

p
le

 r
o

w
s

R
a

n
d

o
m

ly
 s

u
b

s
e

t
c

o
lu

m
n

s

 Y X1 X2 X3 X4 X5 X6 X7 X8

1

3

4

 Y X1 X2 X3 X4 X5 X6 X7 X8

6

8

9

 Y X1 X5 X7

1

3

4

 Y X2 X3 X6

6

8

9

…

…
 Y X2 X3 X8

2

3

5

6

7

9

 Y X1 X2 X3 X4 X5 X6 X7 X8

2

7

9

 Y X1 X2 X3 X4 X5 X6 X7 X8

3

5

6

 Y X1 X2 X6

2

7

9

 Y X4 X5 X8

3

5

6

…

 Y X1 X6 X7

2

4

5

6

7

8

 Y X1 X2 X3 X4 X5 X6 X7 X8

2

5

6

 Y X1 X2 X3 X4 X5 X6 X7 X8

4

7

8

 Y X4 X5 X8

2

5

6

 Y X2 X3 X7

4

7

8

…

…
… …

…

…

R
a

n
d

o
m

ly
 s

u
b

s
e

t
c

o
lu

m
n

s

P
ic

k
 t

h
e

 b
e

s
t

c
o

lu
m

n
 t

o
 s

p
li

t
th

e
 d

a
ta

 i
n

to
 t

w
o

 p
a

rt
s

Random Forest CART

Why Is RF Popular?

● Inherits many advantages of CART: places very little

requirement on data preprocessing

● High Performance

● “Does not overfit”

How Ensemble Models Work

Every model need to

be better than random

guessing

Try to have different

model make mistakes

on different data

Y Model1 Model2 Model3 Model4 Model5 Aggregate

0 0 1 0 0 1 0

1 0 1 1 1 1 1

1 1 1 0 1 1 1

0 1 0 0 1 0 0

0 0 0 1 0 1 0

1 1 1 1 0 0 1

67% 83% 67% 67% 50% 100%

Correlation and Strength

Correlation: How similar the base predictors are

Strength: How accurate the base predictors are

Low correlation => high diversity

Correlation comes with sufficiently high strength

Find good compromise between the two

Small mtry promotes diversity

Nearest Neighbor Classifier

Terminal nodes in a decision tree

represent groups of similar data, with

sizes of neighborhoods decided from

training data (hyper-rectangular

regions)

RF averages terminal nodes from

many trees, so neighborhoods are

varied -- “smooth out” the crude

neighborhoods of a single tree

CART

RF

What Controls RF’s Model Complexity?

● Viewed as adaptive weighted NN, increasing number of trees makes weights

“smoother”

● Sizes of neighborhoods can also be an indicator of model complexity

● There is evidence that smaller trees in RF work better for some data

● Given the same data, smaller trees ⇔ larger neighborhoods

Median Correlation vs. Median RMSE
nodesize=3, 5, 7,15, 30

mtry=3, 6, 9
sampsize=20%, 30%, …, 80%

mtry=3, 6, 9

Higher diversity but

worse accuracy

Higher accuracy

but less diversity

1
3

2

3

1 2

Tuning RF

● Use mtry to balance correlation and strength

● A larger nodesize forces the algorithm to produce smaller

trees, thus larger neighborhoods

● A smaller sampsize also induces smaller trees, also make

trees more diverse (but should be used with larger number

of trees)

Simulated Example: Friedman #1

nodesize=3, 5, 7,15, 30

mtry=3, 6, 9
sampsize=20%, 30%, …, 80%

mtry=3, 6, 9

sampsize=20%, 30%, …, 80%

nodesize=3, 5, 7, 15

mtry=6

“Does Not Overfit”

• Definition of “overfitting”?

• Very different from something like Neural Networks
• Early-stopping: monitor difference between training and validation errors; divergence of the

two is seen as overfitting

• RF grows each tree to maximum size, thus have nearly 0 training error

• For boosting, test set error can keep decreasing as iterations go on even after

training error reached 0! (But it will eventually increase– can’t boost forever)

• Bottom line: gap between training error and test set error does not necessarily

indicate overfitting; increasing test set error with increasing model complexity

does

RF vs. Boosting

RF

● Trees are independently grown

● Use randomness to get diverse

trees

● Grow trees to maximum sizes

● Number of trees is not a tuning

parameter

● Model size can be huge due to

maximal size trees

Boosting

● Trees are grown sequentially

● Each tree tries to correct

previous mistake

● Keep each tree relatively small

● Number of trees should be

tuned

● Model size is usually small

MDS Projections of Individual Tree Predictions

RF GBM (100 trees, shrinkage=.2) GBM (700 trees, shrinkage=.05)

1st tree

last tree

RF vs. DNN

RF:

Adding more trees to RF does not

seem to increase model complexity

No explicit “optimization”

Prediction can not exceed the range

of training data

Difficult to update model with new

data

DNN:

Complexity is predetermined by

network architecture

Optimization with controlled greed

Prediction can be unbounded,

depending on activation function

Trivial to update model with new data

RF vs. XGBoost vs. DNN: Performance

Courtesy of R. P. Sheridan

RF vs. XGBoost vs. DNN: Training Time

Courtesy of R. P. Sheridan

RF vs. XGBoost vs. DNN: Model Sizes

Courtesy of R. P. Sheridan

Error on i-th

Permuted Hold-out

Data, Eik

Error on i-th

Permuted Hold-out

Data, Eik

Hold-out

Data

Shuffle the kth

feature n times

Trained Model

Error on original

hold-out data, E
Error on data (ith

shuffle of kth

feature), Eik

For the kth feature at the ith

shuffle:

 𝑑𝑖𝑘 = 𝐸𝑖𝑘 − 𝐸,

VarImp(𝐹𝑘) =
𝑚𝑒𝑎𝑛(𝑑𝑖𝑘)

𝑆𝐷 𝑑𝑖𝑘

Breiman’s idea of permuting data one variable at a time and seeing how accuracy

drops can be apply to any algorithm, not just RF

Variable Importance by Permutations

Partial Dependence Plot

• Every predictive model represents a function with multiple variables y = 𝑓(𝑥1, … , 𝑥𝑝)

• The marginal relation between y and a particular variable/predictor 𝑥𝑖 can be examined using

Partial Dependence (proposed by Friedman 1999).

Example:

Assuming a model with 2 predicators, y = 𝑓(𝑥1, 𝑥2),

The partial dependence on 𝑥1∶ 𝒑 𝒙𝟏 = ∫ 𝑓 𝑥1, 𝑥2 𝑑𝑥2

 i.e., all remaining variables are integrated out

Computing Partial Dependence

Computing the partial dependence of variable 𝑥1 for model y = 𝑓(𝑥1, … , 𝑥𝑝)

24

x1 x2 x3 …

…

…

f(x)

f1

f2

f3

f4

f5

f6

…

Original data

x1 x2 x3 …

1.2

1.2

1.2

1.2

1.2

1.2

1.2

…

…

Replace the

original values of

𝑥1 with some

constant, such as

1.2

Predict

outcome

using

modified

data

Modified data

Compute the average

prediction, 𝑝(𝑥1 = 1.2)

Repeat the process with

different 𝑥1 values to obtain the

partial dependence function 𝑝(𝑥1)

Note: R package “pdp”, “ALEPlot”, and “ICEbox” implement this and extensions

Prediction Intervals

● The idea behind quantregForest enable prediction intervals to be formed by

post-processing a randomForest object

○ For each new data point to be predicted, it lands in a leaf in each tree and is predicted by the

mean of the (in-bag) data in that leaf, then averaged over all trees

○ We can use the in-bag data that fell in the same terminal nodes as the new data point as a

sample from the conditional distribution, thus can be used to estimate the conditional quantiles

○ The grf package takes this idea further and use it for local likelihood

● While it might be possible to get such intervals with other methods by

customizing the loss function to estimate quantiles, it requires fitting a

separate model for each quantile

Room for Improvement

● Classification runs faster than regression, due to lack of pre-sorting in

regression

● Currently tree depth is not tracked, thus cannot easily control it

● Splitting criteria are hard coded, no easy way to customize

● Handling of large number of categories is tricky

● Missing value handling can be better

● Some special tricks can speed up algorithm for some specific data type (e.g,

all binary predictors)

Wrapping Up

● RF is a flexible, robust and high performance ML method

● Basic understanding of how it works can give intuitions on how to tune it

● For large data, try small sampsize and larger number of trees

● Some of the ideas introduced with the method can be extended to other

methods

Acknowledgement

● Leo Breiman

● Adele Cutler

● Vladimir Svetnik

● Matt Wiener

● Numerous former interns

● Users who reported bugs

