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What is data validation?

Checking the quality of source data before importing or otherwise
processing it

More about the formal aspects of the data, rather than knowing it is
necessarily ‘correct’

...and can you tell if your data is valid?

Data validation 6= Data validity

Data validity often can’t be assessed formally

Classical Test Theory: Observed score = True score + Error

Same as data cleaning? Not quite...

One-off, quick & dirty, fixes in the here and now, vs. robust, ‘future-proofed’ code
that can anticipate the ways in which future data might be problematic

Flagging issues vs actually fixing them
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Principles: Data validation

Steve McConnell’s Code complete (Defensive programming)

Garbage in, garbage out (aka user beware)? Maybe not.

A good program never puts out garbage, regardless what it takes in.

Alternatives:

Garbage in, nothing out

Garbage in, error message out

No garbage allowed in
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You can’t make me...
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Story time

Healthcare records
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Story time

Date formats
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Principles: Data validation & defensive programming

Decide how to handle bad inputs

Should the offending situation trigger an abrupt halt?

Should it be handled elegantly and the processing be allowed to continue?

Error Handling (tryCatch(), purrr::safely())
Replace illegal value with a ‘neutral’ value (zero/missing)

Substitute with closest legal value (e.g., winsorize)

Any of the above & append issue to a log that you can then make available in some
way (if appropriate)

Display an error message to the user

Return previous answer

System halt or shutdown

Assertions (to follow)

When to use each?
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Principles: Data validation & defensive programming

The Code Complete way:

Error-handling
Checks for bad data
For conditions you expect to occur and can foresee (usually a result of bad input data)
Allows the program responds gracefully
Often suitable for data coming in from external (less trusted) sources.

Assertions
Checks for bugs / flushing out errors
For conditions that should never occur
Document any assumptions about what is normal for a function’s pre- and
post-conditions
Corrective action is to alter source code and release a new version
Suitable for data coming in from internal, trusted sources, which have informed
software design.

Choice also depends on a correctness vs robustness trade-off.

For highly robust code, assert and then handle the error anyway.
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Principles: Data validation & defensive programming

The data science way:

Error-handling

For conditions you can’t control (but can potentially foresee, e.g., packages on which
you depend may change; resources may be temporarily unavailable, wrong file
encoding etc).

Assertions

For conditions that should not occur - but can use this for untrusted data sources
especially (not just flushing out errors).
Still act as documentation to make explicit any assumptions about what is normal
Not necessarily indicators that a new release is needed.

Choice also depends on a correctness vs robustness trade-off.

For highly robust code, assert and then handle the error anyway.
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When/where to validate?

Usually, as early as possible, although that could be problematic in some cases
(e.g., when to janitor::clean names()?)

Key decision is where to set up ‘barricades’ between a safe vs non-safe zone

May not be so obvious if sanitizing inputs needs to happen at multiple levels... e.g.,
formal checks of names, dims, vs anything more subtle like overlap in keys between
multiple datasets

Relationship between barricades and assertions (the Code Complete way:)

Error handling outside the barricades, as less safe to make assumptions about the
data

Assertions inside the barricade, as the data there should already be sanitised when it
reaches them. Hence, any issues are more likely to mean the code itself is buggy,
rather than that there are errors in the data (beware of domain-specific/data science
differences)
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Outcomes when failing validation tests

Fix or flag an issue?

Offensive programming helpful here, especially in development: makes
problems very noticeable. i.e., fail hard when an issue is encountered.

Can fix (silently even), e.g., duplicated columns or cases, unnecessary
columns, strip special characters.
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Validation criteria

1 Cell
Class (e.g., integer, numeric, character)
Range (e.g., A number between 35-40)
Fixed set of legal values
Date format

2 Column
Means, SDs, Outlier detection
No missing values/ max number of NAs
Uniqueness for cross-sectional data (e.g., patient ID)
Consistent expressions (e.g., using one of St., Str, Street)

3 Row
Equality or summing up to constant across rows, or multivariate distance

4 Bivariate/Multivariate
Correlations
BMI, or when age < 16, isjob status == “no job”

5 Full dataset
Consistent column names & types
Expected dimensions (nrows/ncols)

6 Cross datasets
If merges are required, correct overlap between keys
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Example: Anscombe’s quartet

datasets::anscombe

x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58
2 8 8 8 8 6.95 8.14 6.77 5.76
3 13 13 13 8 7.58 8.74 12.74 7.71
4 9 9 9 8 8.81 8.77 7.11 8.84
5 11 11 11 8 8.33 9.26 7.81 8.47
6 14 14 14 8 9.96 8.10 8.84 7.04
7 6 6 6 8 7.24 6.13 6.08 5.25
8 4 4 4 19 4.26 3.10 5.39 12.50
9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91
11 5 5 5 8 5.68 4.74 5.73 6.89
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Example: Anscombe’s quartet

Description

Four x-y datasets which have the same traditional statistical

properties (mean, variance, correlation, regression line, etc.),

yet are quite different.

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged

x4 values 8 and 19

y1, y2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03
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assertr
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Example: Anscombe’s quartet

3 4

1 2

6 9 12 7.5 10.0 12.5 15.0 17.5

6 9 12 6 9 12

5.0

7.5

10.0

5.0

7.5

10.0

12.5

15.0

5.0

7.5

10.0

5.0

7.5

10.0

12.5

x

y

Anscombe's quartet (r = 0.81)
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validate
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validate

1 library(validate)

2 library(magrittr)

3

4 anscombe_df <- anscombe

5

6 anscombe_df %>%

7 check_that(

8 nrow(.) > 100 # Ooops!

9 , ncol(.) == 8

10 , is.numeric(x1)

11 , x1 == x2

12 , x1 == x3

13 , x2 == x4 # Ooops again!

14 , x4 %vin% c(8, 19)

15 , is_complete(x1, x2)

16 , cor1 := cor(x1, y1) %>% round(2)

17 , cor2 := cor(x2, y2) %>% round(2)

18 , cor1 == cor2

19 , m_y1 := mean(y1) %>% round(2)

20 , m_y1 == 7.5

21 , y1_sd := sd(y1) %>% round(2)

22 , y1_sd == 2.03) %>%

23 summary()
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validate
assertr
ensurer
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ruler
checkmate

validate

name items passes fails nNA error warning expression
1 V01 1 0 1 0 FALSE FALSE nrow(.) > 100
2 V02 1 1 0 0 FALSE FALSE ncol(.) == 8
3 V03 1 1 0 0 FALSE FALSE is.numeric(x1)
4 V04 11 11 0 0 FALSE FALSE abs(x1 - x2) < 1e-08
5 V05 11 11 0 0 FALSE FALSE abs(x1 - x3) < 1e-08
6 V06 11 1 10 0 FALSE FALSE abs(x2 - x4) < 1e-08
7 V07 11 11 0 0 FALSE FALSE x4 %vin% c(8, 19)
8 V08 11 11 0 0 FALSE FALSE is_complete(x1, x2)
9 V11 1 1 0 0 FALSE FALSE cor(x1, y1) %>% round(2) == cor(x2, y2)...
10 V13 1 1 0 0 FALSE FALSE mean(y1) %>% round(2) == 7.5
11 V15 1 1 0 0 FALSE FALSE sd(y1) %>% round(2) == 2.03
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validate

1 v <- validator( ncol(.) == 8

2 , x1 == x2

3 , x1 == x3

4 , x2 == x4 )

5 cf <- confront(anscombe_df, v)

6 plot(cf)

V1

confront(dat = anscombe_df, x = v)

0.0 0.2 0.4 0.6 0.8 1.0

ncol(.) == 8

Itemsfails passes nNA

V2

V3

V4

confront(dat = anscombe_df, x = v)

0 2 4 6 8 10

abs(x1 − x2) < 1e−08

abs(x1 − x3) < 1e−08

abs(x2 − x4) < 1e−08

Items
fails passes nNA
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assertr + assertive

1 library(assertr)

2 library(assertive)

3

4 anscombe_df %>%

5 # whole df

6 verify(has_all_names("x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4")) %>%

7 verify(nrow(.) == 11) %>%

8 verify(ncol(.) == 8) %>%

9 # specific values:

10 verify(x1 == x2) %>%

11 verify(x2 == x3) %>%

12 verify(is.numeric(x1)) %>%

13 verify(mean(y1) %>% round(2) == 7.5) %>%

14 verify(sd(y1) %>% round(2) == 2.03) %>%

15 verify(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2) ) %>%

16 # by column:

17 assert(within_bounds(4, 14), x1:x2) %>%

18 assert(in_set(8, 19), x4) %>%

19 insist(within_n_sds(4), x1) %>%

20 # by row:

21 assert_rows(num_row_NAs, in_set(0), everything()) %>%

22 assert_rows(col_concat, is_uniq, x1:x4) %>%

23 insist_rows(maha_dist, within_n_mads(10), everything()) %>%

24 # extending via assertive:

25 verify(assertive::is_linux())
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x1 x2 x3 x4 y1 y2 y3 y4

1 10 10 10 8 8.04 9.14 7.46 6.58

2 8 8 8 8 6.95 8.14 6.77 5.76

3 13 13 13 8 7.58 8.74 12.74 7.71

4 9 9 9 8 8.81 8.77 7.11 8.84

5 11 11 11 8 8.33 9.26 7.81 8.47

6 14 14 14 8 9.96 8.10 8.84 7.04

7 6 6 6 8 7.24 6.13 6.08 5.25

8 4 4 4 19 4.26 3.10 5.39 12.50

9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91

11 5 5 5 8 5.68 4.74 5.73 6.89
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assertr + assertive

1 anscombe_df %>%

2 chain_start() %>%

3 # whole df

4 verify(has_all_names("x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4")) %>%

5 verify(nrow(.) == 12) %>% # Ooops!

6 verify(ncol(.) == 8) %>%

7 # specific values:

8 verify(x1 == x2) %>%

9 verify(x2 == x3) %>%

10 verify(is.numeric(x1)) %>%

11 verify(mean(y1) %>% round(2) == 7.5) %>%

12 verify(sd(y1) %>% round(2) == 2.03) %>%

13 verify(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2) ) %>%

14 # by column:

15 assert(within_bounds(4, 14), x1:x2) %>%

16 assert(in_set(8, 19), x4) %>%

17 insist(within_n_sds(4), x1) %>%

18 # by row:

19 assert_rows(num_row_NAs, in_set(0), everything()) %>%

20 assert_rows(col_concat, is_uniq, x1:x4) %>%

21 insist_rows(maha_dist, within_n_mads(10), everything()) %>%

22 # extras:

23 verify(assertive::is_windows()) %>% # Nope !

24 chain_end()
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assertr + assertive

There are 2 errors across 2 verbs:

-

verb redux_fn predicate column index value

1 verify NA nrow(.) == 12 NA 1 NA

2 verify NA assertive::is_windows() NA 1 NA

Error: assertr stopped execution
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ensurer

1 library(ensurer)

2 library(data.table)

3

4 # Set rules & data template

5 ensure_df_dt <- ensures_that(any(is.data.frame(.), is.data.table(.)),

6 ! any(is.na(.)))

7

8 anscombe_tmpl <- anscombe_df[FALSE, ]

9 ensure_as_template <- function(x, tpl){

10 ensure_that(x,

11 identical(names(.), names(tpl)),

12 identical(sapply(., class), sapply(tpl, class)),

13 err_desc = "Please check column names and types, and try again.")}

14

15 # Apply to data

16 anscombe_df %>%

17 ensure_df_dt %>%

18 ensure_as_template(anscombe_tmpl) %>%

19 ensure_that(nrow(.) == 11,

20 ncol(.) == 8) %>%

21 # continuing with assertr chain:

22 verify(x1 == x2) %>%

23 verify(x2 == x3) %>%

24 verify(mean(y1) %>% round(2) == 7.5)
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ensurer

x1 x2 x3 x4 y1 y2 y3 y4

1 10 10 10 8 8.04 9.14 7.46 6.58

2 8 8 8 8 6.95 8.14 6.77 5.76

3 13 13 13 8 7.58 8.74 12.74 7.71

4 9 9 9 8 8.81 8.77 7.11 8.84

5 11 11 11 8 8.33 9.26 7.81 8.47

6 14 14 14 8 9.96 8.10 8.84 7.04

7 6 6 6 8 7.24 6.13 6.08 5.25

8 4 4 4 19 4.26 3.10 5.39 12.50

9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91

11 5 5 5 8 5.68 4.74 5.73 6.89
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ensurer

1 anscombe_df %>%

2 ensure_df_dt %>%

3 ensure_as_template(anscombe_tmpl) %>%

4 ensure_that(all(. > 200), err_desc = "Case(s) under 200!", # Oops !

5 nrow(.) == 11,

6 ncol(.) == 9) %>% # Oops again !

7 # continuing with assertr chain:

8 verify(x1 == x2) %>%

9 verify(x2 == x3) %>%

10 verify(mean(y1) %>% round(2) == 7.5)
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ensurer

Error: conditions failed for call ’anscombe_df %>%

ensure_df_dt %>% ensure_as_template(anscombe_tmpl) %>% ’:

* all(. > 200)

* ncol(.) == 9

Description: Case(s) under 200!
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checkr
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checkr

1 library(checkr)

2

3 new_copy <- anscombe_df %>%

4 check_colnames(names(anscombe_tmpl), exclusive = TRUE, error = TRUE) %>%

5 check_ncol(ncol = 8, error = TRUE) %>%

6 check_nrow(nrow = 11, error = TRUE) %>%

7 check_classes("data.frame") # can’t easily check individual col classes

8

9 another_new_copy <- check_data(anscombe_df,

10 values = list(x1 = 10000, x2 = 10000, x3 = c(4, 14), x4 = 10000,

11 y1 = 10000, y2 = 10000, y3 = 10000, y4 = 10000),

12 exclusive = TRUE,

13 order = TRUE,

14 nrow = 11L, # no ncol

15 error = TRUE)
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x1 x2 x3 x4 y1 y2 y3 y4

1 10 10 10 8 8.04 9.14 7.46 6.58

2 8 8 8 8 6.95 8.14 6.77 5.76

3 13 13 13 8 7.58 8.74 12.74 7.71

4 9 9 9 8 8.81 8.77 7.11 8.84

5 11 11 11 8 8.33 9.26 7.81 8.47

6 14 14 14 8 9.96 8.10 8.84 7.04

7 6 6 6 8 7.24 6.13 6.08 5.25

8 4 4 4 19 4.26 3.10 5.39 12.50

9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91

11 5 5 5 8 5.68 4.74 5.73 6.89
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checkr

1 library(checkr)

2

3 another_new_copy <- check_data(anscombe_df,

4 values = list(x1 = 10000, x2 = 10000, x3 = c(4, 10), # Ooops!

5 x4 = "", # Ooops again!

6 y1 = 10000, y2 = 10000, y3 = 10000, y4 = 10000),

7 exclusive = TRUE,

8 order = TRUE,

9 nrow = 11L, # no ncol

10 error = TRUE)

11

12 # Error: the values in column x3 of anscombe_df must lie between 4 and 10

13

14 # check_rbind(datasets::mtcars, datasets::mtcars)

15 # check_join(data1, data2, by = c(x = "y"), error = FALSE)

16 # check_key()
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pointblank

1 library(pointblank)

2

3 create_agent(anscombe_df) %>% # optional !

4 col_exists(names(anscombe)) %>%

5 col_schema_match(col_schema(.tbl = anscombe_tmpl)) %>%

6

7 col_vals_not_null(names(anscombe_tmpl)) %>%

8 col_vals_in_set(x4, c(8, 19)) %>%

9 col_vals_between(x1, 4, 14) %>%

10

11 col_vals_expr(expr(nrow(.) == 11)) %>%

12 col_vals_expr(expr(ncol(.) == 8)) %>%

13

14 col_vals_expr(expr(x1 == x2)) %>%

15 col_vals_expr(expr(x1 == x3)) %>%

16 col_vals_expr(expr(mean(y1) %>% round(2) == 7.5)) %>%

17 col_vals_expr(expr(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2))) %>%

18 interrogate() # optional !

Packages pointblank Dr Caterina Constantinescu October 21, 2020 43 / 63



Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

Packages pointblank Dr Caterina Constantinescu October 21, 2020 44 / 63



Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

Packages pointblank Dr Caterina Constantinescu October 21, 2020 45 / 63



Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

1 anscombe_df %>%

2 col_exists(names(anscombe_tmpl)) %>%

3 col_schema_match(col_schema(.tbl = anscombe_tmpl)) %>%

4

5 col_vals_not_null(names(anscombe_tmpl)) %>%

6 col_vals_in_set(x4, c(8, 19)) %>%

7 col_vals_between(x1, 4, 10) %>% # Ooops !

8

9 col_vals_expr(expr(nrow(.) == 60)) %>% # Oops again !

10 col_vals_expr(expr(ncol(.) == 8)) %>%

11

12 col_vals_expr(expr(x1 == x2)) %>%

13 col_vals_expr(expr(x1 == x3)) %>%

14 col_vals_expr(expr(mean(y1) %>% round(2) == 7.5)) %>%

15 col_vals_expr(expr(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2)))
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+ col_vals_expr(expr(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2))) # %>%
Error: Exceedance of failed test units where values in ‘x1‘ should have been
between ‘4‘ and ‘10‘.
The ‘col_vals_between()‘ validation failed beyond the absolute threshold level (1).
* failure level (4) >= failure threshold (1)
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If re-adding create agent() + interrogate()
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ruler

1 library(ruler)

2 anscombe_dims_rules <- . %>%

3 dplyr::summarise(nrow = nrow(.) == 11,

4 ncol = ncol(.) == 8)

5

6 anscombe_na_rules <- . %>% dplyr::summarise(all_not_na = Negate(anyNA)(.))

7

8 anscombe_class_rules <- . %>% dplyr::summarise_at(vars(names(anscombe_df)), rules(is.numeric(.)))

9

10 anscombe_data_pack <- data_packs(data_nrow = anscombe_dims_rules,

11 data_na = anscombe_na_rules,

12 data_classes = anscombe_class_rules)

13

14 x1_value_rules <- . %>% dplyr::transmute_at(c("x1"), rules(. %in% 4:14))

15 x4_value_rules <- . %>% dplyr::transmute_at(c("x4"), rules(. %in% c(8, 19)))

16 y1_value_rules <- . %>% dplyr::transmute_at(c("y1"), rules(y1_mean = mean(.) %>% round(2) == 7.5))

17

18 anscombe_cell_packs <- cell_packs(x1_test = x1_value_rules,

19 x4_test = x4_value_rules,

20 y1_test = y1_value_rules)

21

22 anscombe_df %>%

23 expose(anscombe_data_pack, .remove_obeyers = TRUE) %>%

24 expose(anscombe_cell_packs, .remove_obeyers = TRUE) %>% # get_report() %>% # or:

25 assert_any_breaker()
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ruler

x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58
2 8 8 8 8 6.95 8.14 6.77 5.76
3 13 13 13 8 7.58 8.74 12.74 7.71
4 9 9 9 8 8.81 8.77 7.11 8.84
5 11 11 11 8 8.33 9.26 7.81 8.47
6 14 14 14 8 9.96 8.10 8.84 7.04
7 6 6 6 8 7.24 6.13 6.08 5.25
8 4 4 4 19 4.26 3.10 5.39 12.50
9 12 12 12 8 10.84 9.13 8.15 5.56
10 7 7 7 8 4.82 7.26 6.42 7.91
11 5 5 5 8 5.68 4.74 5.73 6.89
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ruler

1 y1_value_rules <- . %>% dplyr::transmute_at(c("y1"), rules(y1_mean = mean(.) %>% round(2) == 7.8)) # Ooops!

2

3

4 anscombe_cell_packs <- cell_packs(x1_test = x1_value_rules,

5 x4_test = x4_value_rules,

6 y1_test = y1_value_rules)

7

8

9 anscombe_df %>%

10 expose(anscombe_data_pack, .remove_obeyers = TRUE) %>%

11 expose(anscombe_cell_packs, .remove_obeyers = TRUE) %>%

12 get_report() # or assert_any_breaker()
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# get_report() or assert_any_breaker()
Breakers report

Tidy data validation report:
# A tibble: 11 x 5

pack rule var id value
<chr> <chr> <chr> <int> <lgl>

1 y1_test y1_mean "" 1 FALSE
2 y1_test y1_mean "" 2 FALSE
3 y1_test y1_mean "" 3 FALSE
4 y1_test y1_mean "" 4 FALSE
5 y1_test y1_mean "" 5 FALSE
6 y1_test y1_mean "" 6 FALSE
7 y1_test y1_mean "" 7 FALSE
8 y1_test y1_mean "" 8 FALSE
9 y1_test y1_mean "" 9 FALSE

10 y1_test y1_mean "" 10 FALSE
11 y1_test y1_mean "" 11 FALSE

Error: assert_any_breaker: Some breakers found in exposure.
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checkmate

1 library(checkmate)

2

3 anscombe_df %>%

4 assert_data_frame(types = lapply(anscombe_tmpl, class) %>% unlist(),

5 any.missing = FALSE,

6 nrows = 11,

7 ncols = 8) # returns output invisibly if successful

8

9 anscombe_df %>%

10 names() %>%

11 assertNames(permutation.of = names(anscombe_tmpl))

12

13 assertTRUE(with(anscombe_df, identical(x1, x2)))

14 assertSetEqual(anscombe_df$x4, c(8, 19))

15 assertTRUE(with(anscombe_df,

16 identical(cor(x1, y1) %>% round(2),

17 cor(x2, y2) %>% round(2))))
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checkmate

1 library(checkmate)

2

3 anscombe_df %>%

4 assert_data_frame(types = lapply(anscombe_tmpl, class) %>% unlist(),

5 any.missing = FALSE,

6 nrows = 12,

7 ncols = 8)

8 # Error in function_list[[k]](value) :

9 # Assertion on ’.’ failed: Must have exactly 12 rows, but has 11 rows.

10

11 anscombe_df %>%

12 names() %>%

13 assertNames(permutation.of = names(mtcars))

14 # Error in function_list[[k]](value) :

15 # Assertion on ’.’ failed: Must be a permutation of set {mpg,cyl,disp,hp,drat,wt,qsec,vs,am,gear,carb}.

16

17 assertTRUE(with(anscombe_df, identical(x1, x4)))

18 # Error: Assertion on ’with(anscombe_df, identical(x1, x4))’ failed: Must be TRUE.
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readr::read csv + readr:::n problems

1 library(readr)

2 inputPath <- "/home/caterina/Desktop/anscombe.csv"

3

4 anscombe_upload <- read_csv(file = inputPath,

5 col_types = list(

6 x1 = col_double(), x2 = col_double(), x3 = col_double(), x4 = col_double(),

7 y1 = col_double(), y2 = col_date(), # !!!

8 y3 = col_double(), y4 = col_double()))

9

10 if (readr:::n_problems(anscombe_upload) > 0) {

11

12 pbs <- problems(anscombe_upload)

13 surface_parsing_errs <- paste0("Found ",

14 nrow(pbs),

15 " parsing error(s) in column(s): ’",

16 paste(unique(pbs$col), collapse = "’ & ’"),

17 "’. Please check the upload, correct any problematic values and try again.")

18 anscombe_upload <- surface_parsing_errs

19

20 } else {

21 anscombe_upload # continue with extra processing, checking, etc

22 }
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readr::read csv + readr:::n problems

> problems(anscombe_upload)
# A tibble: 11 x 5

row col expected actual file
<int> <chr> <chr> <chr> <chr>

1 1 y2 "date like " 9.14 ’/home/caterina/Desktop/anscombe.csv’
2 2 y2 "date like " 8.14 ’/home/caterina/Desktop/anscombe.csv’
3 3 y2 "date like " 8.74 ’/home/caterina/Desktop/anscombe.csv’
4 4 y2 "date like " 8.77 ’/home/caterina/Desktop/anscombe.csv’
5 5 y2 "date like " 9.26 ’/home/caterina/Desktop/anscombe.csv’
6 6 y2 "date like " 8.1 ’/home/caterina/Desktop/anscombe.csv’
7 7 y2 "date like " 6.13 ’/home/caterina/Desktop/anscombe.csv’
8 8 y2 "date like " 3.1 ’/home/caterina/Desktop/anscombe.csv’
9 9 y2 "date like " 9.13 ’/home/caterina/Desktop/anscombe.csv’

10 10 y2 "date like " 7.26 ’/home/caterina/Desktop/anscombe.csv’
11 11 y2 "date like " 4.74 ’/home/caterina/Desktop/anscombe.csv’
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read csv / n problems

But... no “one-stop shop” - it’s OK/necessary to customise

Data validation teaches you to think defensively: code into a language,
not in it

Allows you to build more robust code

Forces you to think more deeply about your assumptions/ check your own
understanding of the data

Supports collaboration
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