
Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Data Validation in R
From Principles to Tools and Packages

Dr Caterina Constantinescu

Tesco Bank

October 21, 2020

Dr Caterina Constantinescu October 21, 2020 1 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

About me

8 caterina.constantinescu@gmail.com

� https://datapowered.io/

� @c constantine

m CaterinaC

Data scientist @ Tesco Bank

Background in psychology

R user since 2012

Ex-EdinbR organiser: � @edinb r M EdinburghRusers

Why data validation?

Dr Caterina Constantinescu October 21, 2020 2 / 63

mailto:caterina.constantinescu@gmail.com
https://datapowered.io/

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Outline

1 Definitions

2 Principles

3 Criteria

4 Packages
validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

5 Additional tools

6 Conclusions

Dr Caterina Constantinescu October 21, 2020 3 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Outline

1 Definitions

2 Principles

3 Criteria

4 Packages
validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

5 Additional tools

6 Conclusions

Definitions Dr Caterina Constantinescu October 21, 2020 4 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

What is data validation?

Checking the quality of source data before importing or otherwise
processing it

More about the formal aspects of the data, rather than knowing it is
necessarily ‘correct’

...and can you tell if your data is valid?

Data validation 6= Data validity

Data validity often can’t be assessed formally

Classical Test Theory: Observed score = True score + Error

Same as data cleaning? Not quite...

One-off, quick & dirty, fixes in the here and now, vs. robust, ‘future-proofed’ code
that can anticipate the ways in which future data might be problematic

Flagging issues vs actually fixing them

Definitions Dr Caterina Constantinescu October 21, 2020 5 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

What is data validation?

Checking the quality of source data before importing or otherwise
processing it

More about the formal aspects of the data, rather than knowing it is
necessarily ‘correct’

...and can you tell if your data is valid?

Data validation 6= Data validity

Data validity often can’t be assessed formally

Classical Test Theory: Observed score = True score + Error

Same as data cleaning? Not quite...

One-off, quick & dirty, fixes in the here and now, vs. robust, ‘future-proofed’ code
that can anticipate the ways in which future data might be problematic

Flagging issues vs actually fixing them

Definitions Dr Caterina Constantinescu October 21, 2020 5 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

What is data validation?

Checking the quality of source data before importing or otherwise
processing it

More about the formal aspects of the data, rather than knowing it is
necessarily ‘correct’

...and can you tell if your data is valid?

Data validation 6= Data validity

Data validity often can’t be assessed formally

Classical Test Theory: Observed score = True score + Error

Same as data cleaning? Not quite...

One-off, quick & dirty, fixes in the here and now, vs. robust, ‘future-proofed’ code
that can anticipate the ways in which future data might be problematic

Flagging issues vs actually fixing them

Definitions Dr Caterina Constantinescu October 21, 2020 5 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

What is data validation?

Checking the quality of source data before importing or otherwise
processing it

More about the formal aspects of the data, rather than knowing it is
necessarily ‘correct’

...and can you tell if your data is valid?

Data validation 6= Data validity

Data validity often can’t be assessed formally

Classical Test Theory: Observed score = True score + Error

Same as data cleaning? Not quite...

One-off, quick & dirty, fixes in the here and now, vs. robust, ‘future-proofed’ code
that can anticipate the ways in which future data might be problematic

Flagging issues vs actually fixing them

Definitions Dr Caterina Constantinescu October 21, 2020 5 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Outline

1 Definitions

2 Principles

3 Criteria

4 Packages
validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

5 Additional tools

6 Conclusions

Principles Dr Caterina Constantinescu October 21, 2020 6 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles Dr Caterina Constantinescu October 21, 2020 7 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation

Steve McConnell’s Code complete (Defensive programming)

Garbage in, garbage out (aka user beware)? Maybe not.

A good program never puts out garbage, regardless what it takes in.

Alternatives:

Garbage in, nothing out

Garbage in, error message out

No garbage allowed in

Principles Dr Caterina Constantinescu October 21, 2020 8 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation

Steve McConnell’s Code complete (Defensive programming)

Garbage in, garbage out (aka user beware)? Maybe not.

A good program never puts out garbage, regardless what it takes in.

Alternatives:

Garbage in, nothing out

Garbage in, error message out

No garbage allowed in

Principles Dr Caterina Constantinescu October 21, 2020 8 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation

Steve McConnell’s Code complete (Defensive programming)

Garbage in, garbage out (aka user beware)? Maybe not.

A good program never puts out garbage, regardless what it takes in.

Alternatives:

Garbage in, nothing out

Garbage in, error message out

No garbage allowed in

Principles Dr Caterina Constantinescu October 21, 2020 8 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation

Steve McConnell’s Code complete (Defensive programming)

Garbage in, garbage out (aka user beware)? Maybe not.

A good program never puts out garbage, regardless what it takes in.

Alternatives:

Garbage in, nothing out

Garbage in, error message out

No garbage allowed in

Principles Dr Caterina Constantinescu October 21, 2020 8 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

You can’t make me...

Principles Dr Caterina Constantinescu October 21, 2020 9 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Story time

Healthcare records

Principles Dr Caterina Constantinescu October 21, 2020 10 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Story time

Date formats

Principles Dr Caterina Constantinescu October 21, 2020 11 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

Decide how to handle bad inputs

Should the offending situation trigger an abrupt halt?

Should it be handled elegantly and the processing be allowed to continue?

Error Handling (tryCatch(), purrr::safely())
Replace illegal value with a ‘neutral’ value (zero/missing)

Substitute with closest legal value (e.g., winsorize)

Any of the above & append issue to a log that you can then make available in some
way (if appropriate)

Display an error message to the user

Return previous answer

System halt or shutdown

Assertions (to follow)

When to use each?

Principles Dr Caterina Constantinescu October 21, 2020 12 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

Decide how to handle bad inputs

Should the offending situation trigger an abrupt halt?

Should it be handled elegantly and the processing be allowed to continue?

Error Handling (tryCatch(), purrr::safely())
Replace illegal value with a ‘neutral’ value (zero/missing)

Substitute with closest legal value (e.g., winsorize)

Any of the above & append issue to a log that you can then make available in some
way (if appropriate)

Display an error message to the user

Return previous answer

System halt or shutdown

Assertions (to follow)

When to use each?

Principles Dr Caterina Constantinescu October 21, 2020 12 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

Decide how to handle bad inputs

Should the offending situation trigger an abrupt halt?

Should it be handled elegantly and the processing be allowed to continue?

Error Handling (tryCatch(), purrr::safely())

Replace illegal value with a ‘neutral’ value (zero/missing)

Substitute with closest legal value (e.g., winsorize)

Any of the above & append issue to a log that you can then make available in some
way (if appropriate)

Display an error message to the user

Return previous answer

System halt or shutdown

Assertions (to follow)

When to use each?

Principles Dr Caterina Constantinescu October 21, 2020 12 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

Decide how to handle bad inputs

Should the offending situation trigger an abrupt halt?

Should it be handled elegantly and the processing be allowed to continue?

Error Handling (tryCatch(), purrr::safely())
Replace illegal value with a ‘neutral’ value (zero/missing)

Substitute with closest legal value (e.g., winsorize)

Any of the above & append issue to a log that you can then make available in some
way (if appropriate)

Display an error message to the user

Return previous answer

System halt or shutdown

Assertions (to follow)

When to use each?

Principles Dr Caterina Constantinescu October 21, 2020 12 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

Decide how to handle bad inputs

Should the offending situation trigger an abrupt halt?

Should it be handled elegantly and the processing be allowed to continue?

Error Handling (tryCatch(), purrr::safely())
Replace illegal value with a ‘neutral’ value (zero/missing)

Substitute with closest legal value (e.g., winsorize)

Any of the above & append issue to a log that you can then make available in some
way (if appropriate)

Display an error message to the user

Return previous answer

System halt or shutdown

Assertions (to follow)

When to use each?

Principles Dr Caterina Constantinescu October 21, 2020 12 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

Decide how to handle bad inputs

Should the offending situation trigger an abrupt halt?

Should it be handled elegantly and the processing be allowed to continue?

Error Handling (tryCatch(), purrr::safely())
Replace illegal value with a ‘neutral’ value (zero/missing)

Substitute with closest legal value (e.g., winsorize)

Any of the above & append issue to a log that you can then make available in some
way (if appropriate)

Display an error message to the user

Return previous answer

System halt or shutdown

Assertions (to follow)

When to use each?

Principles Dr Caterina Constantinescu October 21, 2020 12 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

The Code Complete way:

Error-handling
Checks for bad data
For conditions you expect to occur and can foresee (usually a result of bad input data)
Allows the program responds gracefully
Often suitable for data coming in from external (less trusted) sources.

Assertions
Checks for bugs / flushing out errors
For conditions that should never occur
Document any assumptions about what is normal for a function’s pre- and
post-conditions
Corrective action is to alter source code and release a new version
Suitable for data coming in from internal, trusted sources, which have informed
software design.

Choice also depends on a correctness vs robustness trade-off.

For highly robust code, assert and then handle the error anyway.

Principles Dr Caterina Constantinescu October 21, 2020 13 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

The Code Complete way:

Error-handling
Checks for bad data
For conditions you expect to occur and can foresee (usually a result of bad input data)
Allows the program responds gracefully
Often suitable for data coming in from external (less trusted) sources.

Assertions
Checks for bugs / flushing out errors
For conditions that should never occur
Document any assumptions about what is normal for a function’s pre- and
post-conditions
Corrective action is to alter source code and release a new version
Suitable for data coming in from internal, trusted sources, which have informed
software design.

Choice also depends on a correctness vs robustness trade-off.

For highly robust code, assert and then handle the error anyway.

Principles Dr Caterina Constantinescu October 21, 2020 13 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

The Code Complete way:

Error-handling
Checks for bad data
For conditions you expect to occur and can foresee (usually a result of bad input data)
Allows the program responds gracefully
Often suitable for data coming in from external (less trusted) sources.

Assertions
Checks for bugs / flushing out errors
For conditions that should never occur
Document any assumptions about what is normal for a function’s pre- and
post-conditions
Corrective action is to alter source code and release a new version
Suitable for data coming in from internal, trusted sources, which have informed
software design.

Choice also depends on a correctness vs robustness trade-off.

For highly robust code, assert and then handle the error anyway.

Principles Dr Caterina Constantinescu October 21, 2020 13 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

The Code Complete way:

Error-handling
Checks for bad data
For conditions you expect to occur and can foresee (usually a result of bad input data)
Allows the program responds gracefully
Often suitable for data coming in from external (less trusted) sources.

Assertions
Checks for bugs / flushing out errors
For conditions that should never occur
Document any assumptions about what is normal for a function’s pre- and
post-conditions
Corrective action is to alter source code and release a new version
Suitable for data coming in from internal, trusted sources, which have informed
software design.

Choice also depends on a correctness vs robustness trade-off.

For highly robust code, assert and then handle the error anyway.

Principles Dr Caterina Constantinescu October 21, 2020 13 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

The Code Complete way:

Error-handling
Checks for bad data
For conditions you expect to occur and can foresee (usually a result of bad input data)
Allows the program responds gracefully
Often suitable for data coming in from external (less trusted) sources.

Assertions
Checks for bugs / flushing out errors
For conditions that should never occur
Document any assumptions about what is normal for a function’s pre- and
post-conditions
Corrective action is to alter source code and release a new version
Suitable for data coming in from internal, trusted sources, which have informed
software design.

Choice also depends on a correctness vs robustness trade-off.

For highly robust code, assert and then handle the error anyway.

Principles Dr Caterina Constantinescu October 21, 2020 13 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

Principles Dr Caterina Constantinescu October 21, 2020 14 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Principles: Data validation & defensive programming

The data science way:

Error-handling

For conditions you can’t control (but can potentially foresee, e.g., packages on which
you depend may change; resources may be temporarily unavailable, wrong file
encoding etc).

Assertions

For conditions that should not occur - but can use this for untrusted data sources
especially (not just flushing out errors).
Still act as documentation to make explicit any assumptions about what is normal
Not necessarily indicators that a new release is needed.

Choice also depends on a correctness vs robustness trade-off.

For highly robust code, assert and then handle the error anyway.

Principles Dr Caterina Constantinescu October 21, 2020 15 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

When/where to validate?

Usually, as early as possible, although that could be problematic in some cases
(e.g., when to janitor::clean names()?)

Key decision is where to set up ‘barricades’ between a safe vs non-safe zone

May not be so obvious if sanitizing inputs needs to happen at multiple levels... e.g.,
formal checks of names, dims, vs anything more subtle like overlap in keys between
multiple datasets

Relationship between barricades and assertions (the Code Complete way:)

Error handling outside the barricades, as less safe to make assumptions about the
data

Assertions inside the barricade, as the data there should already be sanitised when it
reaches them. Hence, any issues are more likely to mean the code itself is buggy,
rather than that there are errors in the data (beware of domain-specific/data science
differences)

Principles Dr Caterina Constantinescu October 21, 2020 16 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

When/where to validate?

Usually, as early as possible, although that could be problematic in some cases
(e.g., when to janitor::clean names()?)

Key decision is where to set up ‘barricades’ between a safe vs non-safe zone

May not be so obvious if sanitizing inputs needs to happen at multiple levels... e.g.,
formal checks of names, dims, vs anything more subtle like overlap in keys between
multiple datasets

Relationship between barricades and assertions (the Code Complete way:)

Error handling outside the barricades, as less safe to make assumptions about the
data

Assertions inside the barricade, as the data there should already be sanitised when it
reaches them. Hence, any issues are more likely to mean the code itself is buggy,
rather than that there are errors in the data (beware of domain-specific/data science
differences)

Principles Dr Caterina Constantinescu October 21, 2020 16 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

When/where to validate?

Usually, as early as possible, although that could be problematic in some cases
(e.g., when to janitor::clean names()?)

Key decision is where to set up ‘barricades’ between a safe vs non-safe zone

May not be so obvious if sanitizing inputs needs to happen at multiple levels... e.g.,
formal checks of names, dims, vs anything more subtle like overlap in keys between
multiple datasets

Relationship between barricades and assertions (the Code Complete way:)

Error handling outside the barricades, as less safe to make assumptions about the
data

Assertions inside the barricade, as the data there should already be sanitised when it
reaches them. Hence, any issues are more likely to mean the code itself is buggy,
rather than that there are errors in the data (beware of domain-specific/data science
differences)

Principles Dr Caterina Constantinescu October 21, 2020 16 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Outcomes when failing validation tests

Fix or flag an issue?

Offensive programming helpful here, especially in development: makes
problems very noticeable. i.e., fail hard when an issue is encountered.

Can fix (silently even), e.g., duplicated columns or cases, unnecessary
columns, strip special characters.

Principles Dr Caterina Constantinescu October 21, 2020 17 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Outcomes when failing validation tests

Fix or flag an issue?

Offensive programming helpful here, especially in development: makes
problems very noticeable. i.e., fail hard when an issue is encountered.

Can fix (silently even), e.g., duplicated columns or cases, unnecessary
columns, strip special characters.

Principles Dr Caterina Constantinescu October 21, 2020 17 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Outline

1 Definitions

2 Principles

3 Criteria

4 Packages
validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

5 Additional tools

6 Conclusions

Criteria Dr Caterina Constantinescu October 21, 2020 18 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Validation criteria

1 Cell
Class (e.g., integer, numeric, character)
Range (e.g., A number between 35-40)
Fixed set of legal values
Date format

2 Column
Means, SDs, Outlier detection
No missing values/ max number of NAs
Uniqueness for cross-sectional data (e.g., patient ID)
Consistent expressions (e.g., using one of St., Str, Street)

3 Row
Equality or summing up to constant across rows, or multivariate distance

4 Bivariate/Multivariate
Correlations
BMI, or when age < 16, isjob status == “no job”

5 Full dataset
Consistent column names & types
Expected dimensions (nrows/ncols)

6 Cross datasets
If merges are required, correct overlap between keys

Criteria Dr Caterina Constantinescu October 21, 2020 19 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Validation criteria

1 Cell
Class (e.g., integer, numeric, character)
Range (e.g., A number between 35-40)
Fixed set of legal values
Date format

2 Column
Means, SDs, Outlier detection
No missing values/ max number of NAs
Uniqueness for cross-sectional data (e.g., patient ID)
Consistent expressions (e.g., using one of St., Str, Street)

3 Row
Equality or summing up to constant across rows, or multivariate distance

4 Bivariate/Multivariate
Correlations
BMI, or when age < 16, isjob status == “no job”

5 Full dataset
Consistent column names & types
Expected dimensions (nrows/ncols)

6 Cross datasets
If merges are required, correct overlap between keys

Criteria Dr Caterina Constantinescu October 21, 2020 19 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Validation criteria

1 Cell
Class (e.g., integer, numeric, character)
Range (e.g., A number between 35-40)
Fixed set of legal values
Date format

2 Column
Means, SDs, Outlier detection
No missing values/ max number of NAs
Uniqueness for cross-sectional data (e.g., patient ID)
Consistent expressions (e.g., using one of St., Str, Street)

3 Row
Equality or summing up to constant across rows, or multivariate distance

4 Bivariate/Multivariate
Correlations
BMI, or when age < 16, isjob status == “no job”

5 Full dataset
Consistent column names & types
Expected dimensions (nrows/ncols)

6 Cross datasets
If merges are required, correct overlap between keys

Criteria Dr Caterina Constantinescu October 21, 2020 19 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Validation criteria

1 Cell
Class (e.g., integer, numeric, character)
Range (e.g., A number between 35-40)
Fixed set of legal values
Date format

2 Column
Means, SDs, Outlier detection
No missing values/ max number of NAs
Uniqueness for cross-sectional data (e.g., patient ID)
Consistent expressions (e.g., using one of St., Str, Street)

3 Row
Equality or summing up to constant across rows, or multivariate distance

4 Bivariate/Multivariate
Correlations
BMI, or when age < 16, isjob status == “no job”

5 Full dataset
Consistent column names & types
Expected dimensions (nrows/ncols)

6 Cross datasets
If merges are required, correct overlap between keys

Criteria Dr Caterina Constantinescu October 21, 2020 19 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Validation criteria

1 Cell
Class (e.g., integer, numeric, character)
Range (e.g., A number between 35-40)
Fixed set of legal values
Date format

2 Column
Means, SDs, Outlier detection
No missing values/ max number of NAs
Uniqueness for cross-sectional data (e.g., patient ID)
Consistent expressions (e.g., using one of St., Str, Street)

3 Row
Equality or summing up to constant across rows, or multivariate distance

4 Bivariate/Multivariate
Correlations
BMI, or when age < 16, isjob status == “no job”

5 Full dataset
Consistent column names & types
Expected dimensions (nrows/ncols)

6 Cross datasets
If merges are required, correct overlap between keys

Criteria Dr Caterina Constantinescu October 21, 2020 19 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Validation criteria

1 Cell
Class (e.g., integer, numeric, character)
Range (e.g., A number between 35-40)
Fixed set of legal values
Date format

2 Column
Means, SDs, Outlier detection
No missing values/ max number of NAs
Uniqueness for cross-sectional data (e.g., patient ID)
Consistent expressions (e.g., using one of St., Str, Street)

3 Row
Equality or summing up to constant across rows, or multivariate distance

4 Bivariate/Multivariate
Correlations
BMI, or when age < 16, isjob status == “no job”

5 Full dataset
Consistent column names & types
Expected dimensions (nrows/ncols)

6 Cross datasets
If merges are required, correct overlap between keys

Criteria Dr Caterina Constantinescu October 21, 2020 19 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

Outline

1 Definitions

2 Principles

3 Criteria

4 Packages
validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

5 Additional tools

6 Conclusions

Packages Dr Caterina Constantinescu October 21, 2020 20 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

Example: Anscombe’s quartet

datasets::anscombe

x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58
2 8 8 8 8 6.95 8.14 6.77 5.76
3 13 13 13 8 7.58 8.74 12.74 7.71
4 9 9 9 8 8.81 8.77 7.11 8.84
5 11 11 11 8 8.33 9.26 7.81 8.47
6 14 14 14 8 9.96 8.10 8.84 7.04
7 6 6 6 8 7.24 6.13 6.08 5.25
8 4 4 4 19 4.26 3.10 5.39 12.50
9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91
11 5 5 5 8 5.68 4.74 5.73 6.89

Packages Dr Caterina Constantinescu October 21, 2020 21 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

Example: Anscombe’s quartet

Description

Four x-y datasets which have the same traditional statistical

properties (mean, variance, correlation, regression line, etc.),

yet are quite different.

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged

x4 values 8 and 19

y1, y2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03

Packages Dr Caterina Constantinescu October 21, 2020 22 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

Example: Anscombe’s quartet

3 4

1 2

6 9 12 7.5 10.0 12.5 15.0 17.5

6 9 12 6 9 12

5.0

7.5

10.0

5.0

7.5

10.0

12.5

15.0

5.0

7.5

10.0

5.0

7.5

10.0

12.5

x

y

Anscombe's quartet (r = 0.81)

Packages Dr Caterina Constantinescu October 21, 2020 23 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

validate

Packages validate Dr Caterina Constantinescu October 21, 2020 24 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

validate

1 library(validate)

2 library(magrittr)

3

4 anscombe_df <- anscombe

5

6 anscombe_df %>%

7 check_that(

8 nrow(.) > 100 # Ooops!

9 , ncol(.) == 8

10 , is.numeric(x1)

11 , x1 == x2

12 , x1 == x3

13 , x2 == x4 # Ooops again!

14 , x4 %vin% c(8, 19)

15 , is_complete(x1, x2)

16 , cor1 := cor(x1, y1) %>% round(2)

17 , cor2 := cor(x2, y2) %>% round(2)

18 , cor1 == cor2

19 , m_y1 := mean(y1) %>% round(2)

20 , m_y1 == 7.5

21 , y1_sd := sd(y1) %>% round(2)

22 , y1_sd == 2.03) %>%

23 summary()

Packages validate Dr Caterina Constantinescu October 21, 2020 25 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

validate

name items passes fails nNA error warning expression
1 V01 1 0 1 0 FALSE FALSE nrow(.) > 100
2 V02 1 1 0 0 FALSE FALSE ncol(.) == 8
3 V03 1 1 0 0 FALSE FALSE is.numeric(x1)
4 V04 11 11 0 0 FALSE FALSE abs(x1 - x2) < 1e-08
5 V05 11 11 0 0 FALSE FALSE abs(x1 - x3) < 1e-08
6 V06 11 1 10 0 FALSE FALSE abs(x2 - x4) < 1e-08
7 V07 11 11 0 0 FALSE FALSE x4 %vin% c(8, 19)
8 V08 11 11 0 0 FALSE FALSE is_complete(x1, x2)
9 V11 1 1 0 0 FALSE FALSE cor(x1, y1) %>% round(2) == cor(x2, y2)...
10 V13 1 1 0 0 FALSE FALSE mean(y1) %>% round(2) == 7.5
11 V15 1 1 0 0 FALSE FALSE sd(y1) %>% round(2) == 2.03

Packages validate Dr Caterina Constantinescu October 21, 2020 26 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

validate

1 v <- validator(ncol(.) == 8

2 , x1 == x2

3 , x1 == x3

4 , x2 == x4)

5 cf <- confront(anscombe_df, v)

6 plot(cf)

V1

confront(dat = anscombe_df, x = v)

0.0 0.2 0.4 0.6 0.8 1.0

ncol(.) == 8

Itemsfails passes nNA

V2

V3

V4

confront(dat = anscombe_df, x = v)

0 2 4 6 8 10

abs(x1 − x2) < 1e−08

abs(x1 − x3) < 1e−08

abs(x2 − x4) < 1e−08

Items
fails passes nNA

Packages validate Dr Caterina Constantinescu October 21, 2020 27 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

assertr

Packages assertr Dr Caterina Constantinescu October 21, 2020 28 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

assertr + assertive

1 library(assertr)

2 library(assertive)

3

4 anscombe_df %>%

5 # whole df

6 verify(has_all_names("x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4")) %>%

7 verify(nrow(.) == 11) %>%

8 verify(ncol(.) == 8) %>%

9 # specific values:

10 verify(x1 == x2) %>%

11 verify(x2 == x3) %>%

12 verify(is.numeric(x1)) %>%

13 verify(mean(y1) %>% round(2) == 7.5) %>%

14 verify(sd(y1) %>% round(2) == 2.03) %>%

15 verify(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2)) %>%

16 # by column:

17 assert(within_bounds(4, 14), x1:x2) %>%

18 assert(in_set(8, 19), x4) %>%

19 insist(within_n_sds(4), x1) %>%

20 # by row:

21 assert_rows(num_row_NAs, in_set(0), everything()) %>%

22 assert_rows(col_concat, is_uniq, x1:x4) %>%

23 insist_rows(maha_dist, within_n_mads(10), everything()) %>%

24 # extending via assertive:

25 verify(assertive::is_linux())

Packages assertr Dr Caterina Constantinescu October 21, 2020 29 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

assertr + assertive

x1 x2 x3 x4 y1 y2 y3 y4

1 10 10 10 8 8.04 9.14 7.46 6.58

2 8 8 8 8 6.95 8.14 6.77 5.76

3 13 13 13 8 7.58 8.74 12.74 7.71

4 9 9 9 8 8.81 8.77 7.11 8.84

5 11 11 11 8 8.33 9.26 7.81 8.47

6 14 14 14 8 9.96 8.10 8.84 7.04

7 6 6 6 8 7.24 6.13 6.08 5.25

8 4 4 4 19 4.26 3.10 5.39 12.50

9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91

11 5 5 5 8 5.68 4.74 5.73 6.89

Packages assertr Dr Caterina Constantinescu October 21, 2020 30 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

assertr + assertive

1 anscombe_df %>%

2 chain_start() %>%

3 # whole df

4 verify(has_all_names("x1", "x2", "x3", "x4", "y1", "y2", "y3", "y4")) %>%

5 verify(nrow(.) == 12) %>% # Ooops!

6 verify(ncol(.) == 8) %>%

7 # specific values:

8 verify(x1 == x2) %>%

9 verify(x2 == x3) %>%

10 verify(is.numeric(x1)) %>%

11 verify(mean(y1) %>% round(2) == 7.5) %>%

12 verify(sd(y1) %>% round(2) == 2.03) %>%

13 verify(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2)) %>%

14 # by column:

15 assert(within_bounds(4, 14), x1:x2) %>%

16 assert(in_set(8, 19), x4) %>%

17 insist(within_n_sds(4), x1) %>%

18 # by row:

19 assert_rows(num_row_NAs, in_set(0), everything()) %>%

20 assert_rows(col_concat, is_uniq, x1:x4) %>%

21 insist_rows(maha_dist, within_n_mads(10), everything()) %>%

22 # extras:

23 verify(assertive::is_windows()) %>% # Nope !

24 chain_end()

Packages assertr Dr Caterina Constantinescu October 21, 2020 31 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

assertr + assertive

There are 2 errors across 2 verbs:

-

verb redux_fn predicate column index value

1 verify NA nrow(.) == 12 NA 1 NA

2 verify NA assertive::is_windows() NA 1 NA

Error: assertr stopped execution

Packages assertr Dr Caterina Constantinescu October 21, 2020 32 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ensurer

Packages ensurer Dr Caterina Constantinescu October 21, 2020 33 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ensurer

1 library(ensurer)

2 library(data.table)

3

4 # Set rules & data template

5 ensure_df_dt <- ensures_that(any(is.data.frame(.), is.data.table(.)),

6 ! any(is.na(.)))

7

8 anscombe_tmpl <- anscombe_df[FALSE,]

9 ensure_as_template <- function(x, tpl){

10 ensure_that(x,

11 identical(names(.), names(tpl)),

12 identical(sapply(., class), sapply(tpl, class)),

13 err_desc = "Please check column names and types, and try again.")}

14

15 # Apply to data

16 anscombe_df %>%

17 ensure_df_dt %>%

18 ensure_as_template(anscombe_tmpl) %>%

19 ensure_that(nrow(.) == 11,

20 ncol(.) == 8) %>%

21 # continuing with assertr chain:

22 verify(x1 == x2) %>%

23 verify(x2 == x3) %>%

24 verify(mean(y1) %>% round(2) == 7.5)

Packages ensurer Dr Caterina Constantinescu October 21, 2020 34 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ensurer

x1 x2 x3 x4 y1 y2 y3 y4

1 10 10 10 8 8.04 9.14 7.46 6.58

2 8 8 8 8 6.95 8.14 6.77 5.76

3 13 13 13 8 7.58 8.74 12.74 7.71

4 9 9 9 8 8.81 8.77 7.11 8.84

5 11 11 11 8 8.33 9.26 7.81 8.47

6 14 14 14 8 9.96 8.10 8.84 7.04

7 6 6 6 8 7.24 6.13 6.08 5.25

8 4 4 4 19 4.26 3.10 5.39 12.50

9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91

11 5 5 5 8 5.68 4.74 5.73 6.89

Packages ensurer Dr Caterina Constantinescu October 21, 2020 35 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ensurer

1 anscombe_df %>%

2 ensure_df_dt %>%

3 ensure_as_template(anscombe_tmpl) %>%

4 ensure_that(all(. > 200), err_desc = "Case(s) under 200!", # Oops !

5 nrow(.) == 11,

6 ncol(.) == 9) %>% # Oops again !

7 # continuing with assertr chain:

8 verify(x1 == x2) %>%

9 verify(x2 == x3) %>%

10 verify(mean(y1) %>% round(2) == 7.5)

Packages ensurer Dr Caterina Constantinescu October 21, 2020 36 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ensurer

Error: conditions failed for call ’anscombe_df %>%

ensure_df_dt %>% ensure_as_template(anscombe_tmpl) %>% ’:

* all(. > 200)

* ncol(.) == 9

Description: Case(s) under 200!

Packages ensurer Dr Caterina Constantinescu October 21, 2020 37 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

checkr

Packages checkr Dr Caterina Constantinescu October 21, 2020 38 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

checkr

1 library(checkr)

2

3 new_copy <- anscombe_df %>%

4 check_colnames(names(anscombe_tmpl), exclusive = TRUE, error = TRUE) %>%

5 check_ncol(ncol = 8, error = TRUE) %>%

6 check_nrow(nrow = 11, error = TRUE) %>%

7 check_classes("data.frame") # can’t easily check individual col classes

8

9 another_new_copy <- check_data(anscombe_df,

10 values = list(x1 = 10000, x2 = 10000, x3 = c(4, 14), x4 = 10000,

11 y1 = 10000, y2 = 10000, y3 = 10000, y4 = 10000),

12 exclusive = TRUE,

13 order = TRUE,

14 nrow = 11L, # no ncol

15 error = TRUE)

Packages checkr Dr Caterina Constantinescu October 21, 2020 39 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

checkr

x1 x2 x3 x4 y1 y2 y3 y4

1 10 10 10 8 8.04 9.14 7.46 6.58

2 8 8 8 8 6.95 8.14 6.77 5.76

3 13 13 13 8 7.58 8.74 12.74 7.71

4 9 9 9 8 8.81 8.77 7.11 8.84

5 11 11 11 8 8.33 9.26 7.81 8.47

6 14 14 14 8 9.96 8.10 8.84 7.04

7 6 6 6 8 7.24 6.13 6.08 5.25

8 4 4 4 19 4.26 3.10 5.39 12.50

9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91

11 5 5 5 8 5.68 4.74 5.73 6.89

Packages checkr Dr Caterina Constantinescu October 21, 2020 40 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

checkr

1 library(checkr)

2

3 another_new_copy <- check_data(anscombe_df,

4 values = list(x1 = 10000, x2 = 10000, x3 = c(4, 10), # Ooops!

5 x4 = "", # Ooops again!

6 y1 = 10000, y2 = 10000, y3 = 10000, y4 = 10000),

7 exclusive = TRUE,

8 order = TRUE,

9 nrow = 11L, # no ncol

10 error = TRUE)

11

12 # Error: the values in column x3 of anscombe_df must lie between 4 and 10

13

14 # check_rbind(datasets::mtcars, datasets::mtcars)

15 # check_join(data1, data2, by = c(x = "y"), error = FALSE)

16 # check_key()

Packages checkr Dr Caterina Constantinescu October 21, 2020 41 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

Packages pointblank Dr Caterina Constantinescu October 21, 2020 42 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

1 library(pointblank)

2

3 create_agent(anscombe_df) %>% # optional !

4 col_exists(names(anscombe)) %>%

5 col_schema_match(col_schema(.tbl = anscombe_tmpl)) %>%

6

7 col_vals_not_null(names(anscombe_tmpl)) %>%

8 col_vals_in_set(x4, c(8, 19)) %>%

9 col_vals_between(x1, 4, 14) %>%

10

11 col_vals_expr(expr(nrow(.) == 11)) %>%

12 col_vals_expr(expr(ncol(.) == 8)) %>%

13

14 col_vals_expr(expr(x1 == x2)) %>%

15 col_vals_expr(expr(x1 == x3)) %>%

16 col_vals_expr(expr(mean(y1) %>% round(2) == 7.5)) %>%

17 col_vals_expr(expr(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2))) %>%

18 interrogate() # optional !

Packages pointblank Dr Caterina Constantinescu October 21, 2020 43 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

Packages pointblank Dr Caterina Constantinescu October 21, 2020 44 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

Packages pointblank Dr Caterina Constantinescu October 21, 2020 45 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

1 anscombe_df %>%

2 col_exists(names(anscombe_tmpl)) %>%

3 col_schema_match(col_schema(.tbl = anscombe_tmpl)) %>%

4

5 col_vals_not_null(names(anscombe_tmpl)) %>%

6 col_vals_in_set(x4, c(8, 19)) %>%

7 col_vals_between(x1, 4, 10) %>% # Ooops !

8

9 col_vals_expr(expr(nrow(.) == 60)) %>% # Oops again !

10 col_vals_expr(expr(ncol(.) == 8)) %>%

11

12 col_vals_expr(expr(x1 == x2)) %>%

13 col_vals_expr(expr(x1 == x3)) %>%

14 col_vals_expr(expr(mean(y1) %>% round(2) == 7.5)) %>%

15 col_vals_expr(expr(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2)))

Packages pointblank Dr Caterina Constantinescu October 21, 2020 46 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

+ col_vals_expr(expr(cor(x1, y1) %>% round(2) == cor(x2, y2) %>% round(2))) # %>%
Error: Exceedance of failed test units where values in ‘x1‘ should have been
between ‘4‘ and ‘10‘.
The ‘col_vals_between()‘ validation failed beyond the absolute threshold level (1).
* failure level (4) >= failure threshold (1)

Packages pointblank Dr Caterina Constantinescu October 21, 2020 47 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

pointblank

If re-adding create agent() + interrogate()

Packages pointblank Dr Caterina Constantinescu October 21, 2020 48 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ruler

Packages ruler Dr Caterina Constantinescu October 21, 2020 49 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ruler

1 library(ruler)

2 anscombe_dims_rules <- . %>%

3 dplyr::summarise(nrow = nrow(.) == 11,

4 ncol = ncol(.) == 8)

5

6 anscombe_na_rules <- . %>% dplyr::summarise(all_not_na = Negate(anyNA)(.))

7

8 anscombe_class_rules <- . %>% dplyr::summarise_at(vars(names(anscombe_df)), rules(is.numeric(.)))

9

10 anscombe_data_pack <- data_packs(data_nrow = anscombe_dims_rules,

11 data_na = anscombe_na_rules,

12 data_classes = anscombe_class_rules)

13

14 x1_value_rules <- . %>% dplyr::transmute_at(c("x1"), rules(. %in% 4:14))

15 x4_value_rules <- . %>% dplyr::transmute_at(c("x4"), rules(. %in% c(8, 19)))

16 y1_value_rules <- . %>% dplyr::transmute_at(c("y1"), rules(y1_mean = mean(.) %>% round(2) == 7.5))

17

18 anscombe_cell_packs <- cell_packs(x1_test = x1_value_rules,

19 x4_test = x4_value_rules,

20 y1_test = y1_value_rules)

21

22 anscombe_df %>%

23 expose(anscombe_data_pack, .remove_obeyers = TRUE) %>%

24 expose(anscombe_cell_packs, .remove_obeyers = TRUE) %>% # get_report() %>% # or:

25 assert_any_breaker()

Packages ruler Dr Caterina Constantinescu October 21, 2020 50 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ruler

x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58
2 8 8 8 8 6.95 8.14 6.77 5.76
3 13 13 13 8 7.58 8.74 12.74 7.71
4 9 9 9 8 8.81 8.77 7.11 8.84
5 11 11 11 8 8.33 9.26 7.81 8.47
6 14 14 14 8 9.96 8.10 8.84 7.04
7 6 6 6 8 7.24 6.13 6.08 5.25
8 4 4 4 19 4.26 3.10 5.39 12.50
9 12 12 12 8 10.84 9.13 8.15 5.56
10 7 7 7 8 4.82 7.26 6.42 7.91
11 5 5 5 8 5.68 4.74 5.73 6.89

Packages ruler Dr Caterina Constantinescu October 21, 2020 51 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ruler

1 y1_value_rules <- . %>% dplyr::transmute_at(c("y1"), rules(y1_mean = mean(.) %>% round(2) == 7.8)) # Ooops!

2

3

4 anscombe_cell_packs <- cell_packs(x1_test = x1_value_rules,

5 x4_test = x4_value_rules,

6 y1_test = y1_value_rules)

7

8

9 anscombe_df %>%

10 expose(anscombe_data_pack, .remove_obeyers = TRUE) %>%

11 expose(anscombe_cell_packs, .remove_obeyers = TRUE) %>%

12 get_report() # or assert_any_breaker()

Packages ruler Dr Caterina Constantinescu October 21, 2020 52 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

ruler

get_report() or assert_any_breaker()
Breakers report

Tidy data validation report:
A tibble: 11 x 5

pack rule var id value
<chr> <chr> <chr> <int> <lgl>

1 y1_test y1_mean "" 1 FALSE
2 y1_test y1_mean "" 2 FALSE
3 y1_test y1_mean "" 3 FALSE
4 y1_test y1_mean "" 4 FALSE
5 y1_test y1_mean "" 5 FALSE
6 y1_test y1_mean "" 6 FALSE
7 y1_test y1_mean "" 7 FALSE
8 y1_test y1_mean "" 8 FALSE
9 y1_test y1_mean "" 9 FALSE

10 y1_test y1_mean "" 10 FALSE
11 y1_test y1_mean "" 11 FALSE

Error: assert_any_breaker: Some breakers found in exposure.

Packages ruler Dr Caterina Constantinescu October 21, 2020 53 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

checkmate

Packages checkmate Dr Caterina Constantinescu October 21, 2020 54 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

checkmate

1 library(checkmate)

2

3 anscombe_df %>%

4 assert_data_frame(types = lapply(anscombe_tmpl, class) %>% unlist(),

5 any.missing = FALSE,

6 nrows = 11,

7 ncols = 8) # returns output invisibly if successful

8

9 anscombe_df %>%

10 names() %>%

11 assertNames(permutation.of = names(anscombe_tmpl))

12

13 assertTRUE(with(anscombe_df, identical(x1, x2)))

14 assertSetEqual(anscombe_df$x4, c(8, 19))

15 assertTRUE(with(anscombe_df,

16 identical(cor(x1, y1) %>% round(2),

17 cor(x2, y2) %>% round(2))))

Packages checkmate Dr Caterina Constantinescu October 21, 2020 55 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

checkmate

1 library(checkmate)

2

3 anscombe_df %>%

4 assert_data_frame(types = lapply(anscombe_tmpl, class) %>% unlist(),

5 any.missing = FALSE,

6 nrows = 12,

7 ncols = 8)

8 # Error in function_list[[k]](value) :

9 # Assertion on ’.’ failed: Must have exactly 12 rows, but has 11 rows.

10

11 anscombe_df %>%

12 names() %>%

13 assertNames(permutation.of = names(mtcars))

14 # Error in function_list[[k]](value) :

15 # Assertion on ’.’ failed: Must be a permutation of set {mpg,cyl,disp,hp,drat,wt,qsec,vs,am,gear,carb}.

16

17 assertTRUE(with(anscombe_df, identical(x1, x4)))

18 # Error: Assertion on ’with(anscombe_df, identical(x1, x4))’ failed: Must be TRUE.

Packages checkmate Dr Caterina Constantinescu October 21, 2020 56 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Outline

1 Definitions

2 Principles

3 Criteria

4 Packages
validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

5 Additional tools

6 Conclusions

Additional tools Dr Caterina Constantinescu October 21, 2020 57 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

readr::read csv + readr:::n problems

1 library(readr)

2 inputPath <- "/home/caterina/Desktop/anscombe.csv"

3

4 anscombe_upload <- read_csv(file = inputPath,

5 col_types = list(

6 x1 = col_double(), x2 = col_double(), x3 = col_double(), x4 = col_double(),

7 y1 = col_double(), y2 = col_date(), # !!!

8 y3 = col_double(), y4 = col_double()))

9

10 if (readr:::n_problems(anscombe_upload) > 0) {

11

12 pbs <- problems(anscombe_upload)

13 surface_parsing_errs <- paste0("Found ",

14 nrow(pbs),

15 " parsing error(s) in column(s): ’",

16 paste(unique(pbs$col), collapse = "’ & ’"),

17 "’. Please check the upload, correct any problematic values and try again.")

18 anscombe_upload <- surface_parsing_errs

19

20 } else {

21 anscombe_upload # continue with extra processing, checking, etc

22 }

Additional tools Dr Caterina Constantinescu October 21, 2020 58 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

readr::read csv + readr:::n problems

> problems(anscombe_upload)
A tibble: 11 x 5

row col expected actual file
<int> <chr> <chr> <chr> <chr>

1 1 y2 "date like " 9.14 ’/home/caterina/Desktop/anscombe.csv’
2 2 y2 "date like " 8.14 ’/home/caterina/Desktop/anscombe.csv’
3 3 y2 "date like " 8.74 ’/home/caterina/Desktop/anscombe.csv’
4 4 y2 "date like " 8.77 ’/home/caterina/Desktop/anscombe.csv’
5 5 y2 "date like " 9.26 ’/home/caterina/Desktop/anscombe.csv’
6 6 y2 "date like " 8.1 ’/home/caterina/Desktop/anscombe.csv’
7 7 y2 "date like " 6.13 ’/home/caterina/Desktop/anscombe.csv’
8 8 y2 "date like " 3.1 ’/home/caterina/Desktop/anscombe.csv’
9 9 y2 "date like " 9.13 ’/home/caterina/Desktop/anscombe.csv’

10 10 y2 "date like " 7.26 ’/home/caterina/Desktop/anscombe.csv’
11 11 y2 "date like " 4.74 ’/home/caterina/Desktop/anscombe.csv’

Additional tools Dr Caterina Constantinescu October 21, 2020 59 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Outline

1 Definitions

2 Principles

3 Criteria

4 Packages
validate
assertr
ensurer
checkr
pointblank
ruler
checkmate

5 Additional tools

6 Conclusions

Conclusions Dr Caterina Constantinescu October 21, 2020 60 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Conclusions Dr Caterina Constantinescu October 21, 2020 61 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Conclusions

Discussed packages/tools:
validate
assertr (assertive)
ensurer
checkr
pointblank
ruler
checkmate
read csv / n problems

But... no “one-stop shop” - it’s OK/necessary to customise

Data validation teaches you to think defensively: code into a language,
not in it

Allows you to build more robust code

Forces you to think more deeply about your assumptions/ check your own
understanding of the data

Supports collaboration

Conclusions Dr Caterina Constantinescu October 21, 2020 62 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Conclusions

Discussed packages/tools:
validate
assertr (assertive)
ensurer
checkr
pointblank
ruler
checkmate
read csv / n problems

But... no “one-stop shop” - it’s OK/necessary to customise

Data validation teaches you to think defensively: code into a language,
not in it

Allows you to build more robust code

Forces you to think more deeply about your assumptions/ check your own
understanding of the data

Supports collaboration

Conclusions Dr Caterina Constantinescu October 21, 2020 62 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Conclusions

Discussed packages/tools:
validate
assertr (assertive)
ensurer
checkr
pointblank
ruler
checkmate
read csv / n problems

But... no “one-stop shop” - it’s OK/necessary to customise

Data validation teaches you to think defensively: code into a language,
not in it

Allows you to build more robust code

Forces you to think more deeply about your assumptions/ check your own
understanding of the data

Supports collaboration

Conclusions Dr Caterina Constantinescu October 21, 2020 62 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Conclusions

Discussed packages/tools:
validate
assertr (assertive)
ensurer
checkr
pointblank
ruler
checkmate
read csv / n problems

But... no “one-stop shop” - it’s OK/necessary to customise

Data validation teaches you to think defensively: code into a language,
not in it

Allows you to build more robust code

Forces you to think more deeply about your assumptions/ check your own
understanding of the data

Supports collaboration

Conclusions Dr Caterina Constantinescu October 21, 2020 62 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Conclusions

Discussed packages/tools:
validate
assertr (assertive)
ensurer
checkr
pointblank
ruler
checkmate
read csv / n problems

But... no “one-stop shop” - it’s OK/necessary to customise

Data validation teaches you to think defensively: code into a language,
not in it

Allows you to build more robust code

Forces you to think more deeply about your assumptions/ check your own
understanding of the data

Supports collaboration

Conclusions Dr Caterina Constantinescu October 21, 2020 62 / 63

Definitions
Principles

Criteria
Packages

Additional tools
Conclusions

Thanks!

Conclusions Dr Caterina Constantinescu October 21, 2020 63 / 63

	Definitions
	Principles
	Criteria
	Packages
	validate
	assertr
	ensurer
	checkr
	pointblank
	ruler
	checkmate

	Additional tools
	Conclusions

